Machine Learning mit Python (Live-Online-Training) - Webinar von DHL Data Science Seminare GmbH

Dieses Online-Training ist das zweite Modul des Lehrgangs Data Science Crash Course mit Python (5556681). Sie erhalten eine fundierte Einführung in die Themen Data Science, Künstliche Intelligenz und Machine Learning für numerische und symbolische Daten.

Inhalte

Das Seminar   „Machine Learning mit Python“   gibt einen Einblick in die unterschiedlichen Algorithmen des Maschinellen Lernens. Die Theorie dahinter wird dabei anhand von Praxis-Übungen aus den Bereichen Clustering, Virtuelle Sensoren und Zeitreihenvorhersage vermittelt. In diesem Modul werden Sie sich hauptsächlich mit der Anwendung des Machine Learning auf numerischen Daten beschäftigen.

Wenn heutzutage von Künstlicher Intelligenz gesprochen wird, meinen die meisten eigentlich Maschinelles Lernen. Maschinelles Lernen, oder Machine Learning, lässt die Daten für einen sprechen. Denn anstatt dass Sie selbst Regeln erstellen, z. B. wie Sie eine Prozess möglichst effizient ablaufen lassen oder wann die nächste Wartung durchgeführt werden muss, finden Machine Learning Algorithmen mit Ihrer Hilfe diese Regeln selbst.

Dabei unterteilt sich Machine Learning in drei Hauptbereiche: Supervised Learning, Unsupervised Learning und Reinforcement Learning. Sie werden aus diesen Bereichen zahlreiche Algorithmen kennenlernen und ausgewählte Algorithmen (KMeans, DBSCAN, Random Forest, XGBoost, Neuronale Netze, LSTMs) in drei Praxis-Übungen selbst intensiv anwenden. Gerne können Sie hierfür auch Ihre eigene Fragestellung inkl. der notwendigen Daten mitbringen.

Der Kurs Machine Learning mit Python ist das zweite Modul des Lehrgangs Data Science Crash Course mit Python. Mit dem Lehrgang erhalten eine fundierte und modular aufgebaute Einführung in die Themen Data Science, Künstliche Intelligenz und Machine Learning (Maschinelles Lernen) sowohl für numerische Daten als auch für Textdaten. Bei entsprechenden Vorkenntnissen können Sie die Module auch einzeln besuchen. Infos zum gesamten Data Science Crash Course mit Python finden Sie, indem Sie mit der Semigator-Suche nach der SG-Seminar-Nr. 5556681 suchen.

Agenda

  • Praxis-Beispiel I (Clustering)
    • Einführung in den Kontext und die Daten
    • Zielsetzung und Methodennutzung
    • Praxis-Übung I: Dimensionalitätsreduzierung mit einer Principal Components Analysis (PCA)
    • Praxis-Übung II: Kategorie-Einteilung von Service-Einsätzen mittels KMeans und Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
  • Praxis-Beispiel II (Virtueller Sensor)
    • Einführung in den Kontext und die Daten
    • Zielsetzung und Methodennutzung
    • Praxis-Übung: Vorhersage eines (meistens nicht direkt messbaren) Wertes anhand vorhandener Variablen/Merkmale mittels Decision Trees, Random Forest und XGBoost und Evaluation mittels Feature Importance
  • Praxis-Beispiel III (Trendvorhersage)
    • Einführung in den Kontext und die Daten
    • Zielsetzung und Methodennutzung
    • Praxis-Übung I: Zeitreihenvorhersage mittels Random Forest, XGBoost und Neuronalen Netzen
    • Praxis-Übung II: Mulitvariate Zeitreihenvorhersage mittels Long-Short-Term-Memory (LSTM) inkl. eiterführende Python-Bibliotheken: keras, tensorflow

Dauer des Seminars

  • Rahmen: 2 Tage mit 16 Unterrichtsstunden (täglich 8 Stunden, 9-17 Uhr)
  • Aufteilung Theorie/Praxis: 40% Vorlesung + 60 % Praxis, Übungen und Demos

 

Das Seminar   „Machine Learning mit Python“   gibt einen Einblick in die unterschiedlichen Algorithmen des Maschinellen Lernens. Die Theorie dahinter wird dabei anhand von Praxis-Übungen aus d ...

Mehr Informationen >>

Lernziele

Am Ende des Seminars Machine Learning mit Python werden Sie

  • eine Kategorien-Einteilung/Clustering mit Unüberwachtem Lernen/Unsupervised Learning (PCA, k-Means, DBSCAN) durchführen können,
  • eine Trendvorhersage mit Überwachtem Lernen/Supervised Learning (Neuronale Netze, XGBoost, LSTM) durchführen können,
  • einen Virtuellen Sensor mit Überwachtem Lernen/Supervised Learning (Decision Tree, Random Forest, XGBoost) entwickeln können.

Am Ende des Seminars Machine Learning mit Python werden Sie

  • eine Kategorien-Einteilung/Clustering mit Unüberwachtem Lernen/Unsupervised Learning (PCA, k-Means, DBSCAN) durchführen können,
  • eine Tre ...
Mehr Informationen >>

Zielgruppen

Das Seminar Machine Learning mit Python ist für Beschäftigte aus operativen Bereichen, R&D und IT mit grundlegenden Programmierkenntnissen geeignet, welche die Potenziale von Data Science, Künstlicher Intelligenz und Maschinellem Lernen für ihren Bereich kennenlernen und hautnah erfahren möchten. Anwender, Studenten, Doktoranden und Forscher aus den mathematischen, statistischen, naturwissenschaftlichen, ingenieurwissenschaftlichen, informationstechnologischen, betriebs-, wirtschafts-, markt- und sozialwissenschaftlichen Bereichen sind ebenfalls willkommen.

Inhaltliche Voraussetzungen zur Kursteilnahme

Für das Seminar Machine Learning mit Python ist Voraussetzung, entweder das Seminar Data Science und Künstliche Intelligenz mit Python (SG-Seminar-Nr. 5442508) besucht zu haben oder dessen Inhalte zu kennen. Speziell gehört dazu, in Python programmieren zu können und eine grundsätzliches Verständnis von Modellierung und dem zugehörigen Prozess zu haben.

Technische Voraussetzungen zur Kursteilnahme

Bei unseren Online-Seminaren sitzen Sie an Ihrem Arbeitsplatz – sei es in einem Büro, in einem Unternehmen, im Home-Office oder im Hotel. Sie nehmen an einem Live-Online-Training teil, der vom Ablauf und der Qualität unseren Präsenztrainings entspricht. Der Dozent führt in die Themen ein, beantwortet die Fragen der Teilnehmer und geht in den Übungsrunden auf jeden Teilnehmer persönlich ein. Es gibt eine Vielzahl digitaler Hilfsmittel wie Whiteboards, persönliche Chats mit dem Dozenten, Kanäle mit Unterrichtsmaterialien usw. Mit der heutigen Technik kommt das Präsenz-Seminar zu Ihnen ins Büro. Ein Teilnehmer unserer Kurse schreibt: „Obwohl ich wegen Online Seminar sehr skeptisch gegenüber stand, kann ich dem Dozenten wirklich nur dafür gratulieren, wie gut dieser dieses Seminar umgesetzt hat. Dies könnte man wohl auch nicht besser bei einer Vorort-Schulung machen. Daher kann ich dieses Seminar nur wirklich sehr empfehlen.“ Lesen Sie weitere Rezensionen unserer Teilnehmer unter .

  • Sie benötigen zur Teilnahme an dem Online-Seminar einen Computer mit Internetzugang (empfohlene Bandbreite 1 MBit/s).
  • Sie erhalten nach der Anmeldung eine detaillierte Installationsanleitung für die erforderliche Statistik- und Videokonferenz-Software (Teilnahme mit Browser möglich). Bei Bedarf können Sie einen Fernzugang zu einem Schulungscomputer mit der erforderlichen Software erhalten (Windows Remote Desktop).
  • Bei Verwendung eines Laptops: Testen Sie die Funktionsfähigkeit von Kamera, Mikrofon und Lautsprecher. Bei Verwendung eines PCs: Schließen Sie eine Webcam und Lautsprecher an und testen Sie deren Funktionen. Ein Headset wäre empfehlenswert, wenn auch nicht notwendig, wenn vorhandene Geräte funktionieren.
  • Sie können mit einem Gerät/Bildschirm teilnehmen und in gedruckte Unterlagen schauen. Von Vorteil wäre die Verwendung von zwei Geräten/Monitoren: Auf dem einen Gerät/Monitor (z. B. Laptop oder Tablet) sehen Sie die Präsentation des Dozenten oder Unterrichtsmaterialien. Auf dem anderen Gerät/Monitor (z. B. PC oder Laptop) können Sie parallel dazu das Gelernte direkt anwenden und Übungsaufgaben lösen.

Das Seminar Machine Learning mit Python ist für Beschäftigte aus operativen Bereichen, R&D und IT mit grundlegenden Programmierkenntnissen geeignet, welche die Potenziale von Data Science, Künstl ...

Mehr Informationen >>

Termine und Orte

SG-Seminar-Nr.: 5577056

Anbieter-Seminar-Nr.: MLP

Termine

  • 16.02.2022 - 17.02.2022

    Webinar

  • 27.04.2022 - 28.04.2022

    Webinar

  • 06.07.2022 - 07.07.2022

    Webinar

Seminare mit Termin haben Plätze verfügbar. Rechnung erfolgt durch Veranstalter. Für MwSt. Angabe auf den Termin klicken.

Jetzt buchen ›
Seminar merken ›

Semigator berücksichtigt

  • Frühbucher-Preise
  • Last-Minute-Preise
  • Gruppenkonditionen

und verfügt über Sonderkonditionen mit einigen Anbietern.

Der Anbieter ist für den Inhalt verantwortlich.

Über Semigator mehr erfahren

  • Anbietervergleich von über 1.500 Seminaranbietern
  • Vollständige Veranstaltungsinformationen
  • Schnellbuchung
  • Persönlicher Service