Multivariate Datenanalyse mit Python, Komplett in Köln - Seminar / Kurs von DHL Data Science Seminare GmbH

Der Python Kurs Multivariate Datenanalyse mit Python führt in die multivariate Statistik ein.

Inhalte

Der Python Kurs Multivariate Datenanalyse mit Python führt in die multivariate Statistik ein. Die Anwendung der multivariaten Verfahren mit der statistischen Programmiersprache Python unter der Entwicklungsumgebung Spyder aus der Anaconda-Distribution wird auf unseren Schulungslaptops mit vielen Beispielen und Übungsaufgaben trainiert und vertieft. Das Ziel der Python Schulung ist es, multivariate Verfahren mit Python anwenden zu können.

Was sind multivariate Verfahren?

Die Multivariate Datenanalyse untersucht den Einfluss von mehreren statistischen Variablen zugleich. Zusammenhangsstrukturen zwischen den Variablen können nur mit den multivariaten Verfahren der multivariaten Statistik erkannt werden. Damit sind diese den univariaten Verfahren überlegen, bei denen der Einfluss jeder Variablen auf die Messgröße einzeln analysiert wird. Die univariaten Verfahren werden in dem Python-Kurs Grundlagen der Statistik mit Python vermittelt.

Multivariate Verfahren wollen im Wesentlichen die in einem Datensatz enthaltene Zahl der Variablen reduzieren, im Ergebnis aber die Gesamtheit der enthaltenen Information berücksichtigen. Dazu wird die Struktur der Daten analysiert. Entweder gibt man im Rahmen der induktiven Statistik eine Struktur vor und prüft mit Hilfe strukturprüfender Verfahren, ob die Daten mit der vorgegebenen Struktur zusammenpassen, oder man versucht im Rahmen der explorativen Statistik, die Struktur zu entdecken und aus den Daten zu extrahieren.

Beide Verfahrensarten der multivariaten Statistik ergänzen sich häufig. So werden beispielsweise mit Hilfe der Clusteranalyse verschiedene, voneinander abgrenzbare Kundengruppen bestimmt. Mittels einer nachgeschalteten Diskriminanzanalyse können dann die Merkmale analysiert werden, mit denen die gefundenen Gruppen sich voneinander unterscheiden lassen. Mit den gewonnenen Erkenntnissen kann bei neuen Fällen die Gruppenzugehörigkeit prognostiziert werden. Oder eine Vielzahl von zu analysierenden Variablen werden zunächst mit Hilfe einer Faktorenanalyse auf wenige Faktoren reduziert. Anschließend werden die auf diese Weise ermittelten Faktoren mit Regressions-, Varianz- oder Zeitreihenanalysen untersucht.

Multivariate Verfahren werden erfolgreich in den verschiedensten Feldern eingesetzt wie beispielsweise in den betriebswirtschaftlichen Anwendungsbereichen (Business Intelligence, Marktforschung und Marketing), in der Technik (Produktentwicklung und Produktion) und in den wissenschaftlichen Anwendungsbereichen (z. B. Medizin, Pharmazie, Biowissenschaften, Psychologie, Pädagogik, Soziologie).

Inhalte der Python Schulung

In den ersten drei Tagen (Basiskurs) vom Python Kurs Multivariate Datenanalyse mit Python werden die regressionsanalytischen Verfahren behandelt, die aufeinander aufbauen. Dazu gehören die multiple Regressionsanalyse, die die linearen und nichtlinearen Zusammenhänge zwischen mehreren Variablen quantitativ beschreibt und erklärt und Prognosen erlaubt, die logistische Regression, die zur Klassifizierung und Risikoabschätzung von Einzelfällen geeignet ist und die Zeitregression, die Zeitreihen mittels der multiplen Regression in mehrere Komponenten zerlegt und Prognosen für zukünftige Entwicklungen erlaubt. Im dreitägigen Basistraining wird gezeigt, wie lineare, nicht-lineare und kategoriale Einflussgrößen und deren Wechselwirkungen modelliert werden. Mit diesen fortgeschrittenen Kenntnissen können komplexe und realitätsnahe Regressionsmodelle mit hohem Erklärungswert und sehr guten Prognosen entwickelt werden.

In den letzten beiden Tagen (Aufbaukurs) vom Python Kurs Multivariate Datenanalyse mit Python werden strukturentdeckende Verfahren behandelt, die der Entdeckung von Zusammenhängen zwischen Variablen dienen. Dazu gehören die Zeitreihenanalyse, die Zeitreihen mittels verschiedener Verfahren (exponentielle Prognosemodelle und ARIMA-Modelle) untersucht und Prognosen für zukünftige Entwicklungen erlaubt, die Clusteranalyse, die eine Vielzahl von Fällen zu wenigen Gruppen (Cluster) bündelt, und die explorative Faktorenanalyse, die eine Vielzahl von Variablen zu wenigen Dimensionen (Faktoren) reduziert. Als Ergänzung zur Clusteranalyse wird die Diskriminanzanalyse besprochen, mit der analysiert werden kann, mit welchen Variablen die in der Clusteranalyse gefunden Gruppen am besten beschrieben werden können. Als Ergänzung zur Faktorenanalyse wird die Reliabilitätsanalyse behandelt, die die Eignung und Reliabilität eines Itemsets für einen Faktor prüft. Es wird insbesondere gezeigt, wie mit Hilfe der Faktoren- und Reliabilitätanalyse die Güte eines Fragebogens zur Messung latenter Dimensionen überprüft werden kann.

Die Varianzanalyse ist Schwerpunktthema im Aufbaukurs des Grundlagenseminars.

Inhalte Basis-Training

  • Multiple RegressionsanalyseRegressionsmodelle für kontinuierliche und kategoriale Variablen mit Suppressionseffekten (Suppressoranalyse), Moderationseffekten (Moderatoranalyse), nicht-linearen Effekten (polynomiale Regression) und Interaktionseffekten zwischen kategorialen und kontinuierlichen Variablen (dummykodierte Regressionsanalyse); automatisierte Verfahren zur Auswahl von Prognosevariablen und der Ermittlung des am besten an die Daten angepassten Modells; Residualdiagnostik und Prüfung der Modellprämissen (Angemessenheit des Modells, Unabhängigkeit der Daten, Multikollinearität, Homoskedastizität und Normalverteilung der Residuen, Erkennung von einflussreichen Datenpunkten); 2D- und 3D-Grafiken von Regressionsmodellen
  • Logistische RegressionSchätzung der logistischen Regressionsfunktion, Interpretation der Koeffizienten (Logits, Odds und Wahrscheinlichkeiten), Berechnung von Odds Ratio und relatives Risiko, Konfusionstabellen mit Trefferquote, Spezifität und Sensitivität, ROC-Kurven und automatisierte Verfahren zur Ermittlung des optimalen Trennwerts, automatisierte Auswahl von Prognosevariablen, Prüfung des Gesamtmodells und der Merkmalsvariablen (AUC, Likelihood-Ratio-Test und Pseudo R-Quadrat-Statistiken)
  • ZeitregressionZeitreihenmodelle mit Trend- und Saisonkomponenten, lineare/nichtlineare Trendmodelle mit Berücksichtigung von zyklischen Schwankungen und Strukturbrüchen, Extrapolationsmodelle und Strukturmodelle, Erstellung von Prognosen mit Prognoseintervallen, Beurteilung der Modellgüte und Prognosegüte, grafische Darstellung von Zeitreihen

Inhalte Aufbau-Training

  • ZeitreihenanalyseGlättungsmethoden und LOESS-Dekomposition von Trend- und Saison-Komponenten, exponentielle Prognosemodelle (State-Space-Modelle) und ARIMA-Modelle, Erstellung von Prognosen, Beurteilung der Modellgüte und Prognosegüte, grafische Darstellung von Zeitreihen
  • Clusteranalysehierarchische Clusteranalyse (Distanz- und Ähnlichkeitsmaße, Fusionierungs-Algorithmen: Single-Linkage, Complete-Linkage, Ward), k-Means-Clusteranalyse
  • DiskriminanzanalyseSchätzung der Diskriminanzfunktion, Prüfung der Modellgüte und der Eignung von Variablen, automatisierte Auswahl von Variablen, Klassifikation von neuen Fällen
  • Explorative FaktorenanalyseHauptachsenanalyse, Hauptkomponentenanalyse, Extraktion und Rotation der Faktoren, Variablenauswahl, Modellgüte, Berechnung von Faktorwerten
  • ReliabilitätsanalysePrüfung des Indikatorsets eines Faktors auf Eindimensionalität; Reliabilitätsprüfung auf Indikatorebene (Indikatorreliabilität): Faktorladungen, Kommunalitäten, Cronbachs Alpha (ohne Item), Item-To-Skala-Korrelation; Prüfung auf Konstruktebene (Faktorreliabilität): Cronbachs Alpha, Inter-Item-Korrelationen, Einheitsstruktur

Lernziele

Lernziele der Python Schulung

fortgeschrittene Funktionen von Python kennen lernen, Daten von Studien bzw. betrieblichen Prozessen erheben und mit Hilfe der multivariaten Statistik auswerten können, Ergebnisse von multivariaten Verfahren grafisch darstellen, erläutern und interpretieren können, aufgrund einer Fragestellung das geeignete multivariate Verfahren identifizieren und anwenden können

Übungen im Python Kurs

Es wird Wert auf den Anwendungsbezug gelegt, die Praxisbeispiele und Übungsaufgaben erfolgen in der Python Schulung auf unseren Schulungslaptops mit der statistischen Programmiersprache Python und der Entwicklungsumgebung Spyder aus der Anaconda Distribution.

Zielgruppen

Zielgruppe der Python Schulung

Der Python Kurs richtet sich an Anwender, Fachkräfte, Doktoranden und Studierende aus den Bereichen der Sozial- und Marktforschung, den Wirtschaftswissenschaften und der Betriebswirtschaft (Marketing, Business Intelligence) und der psychologischen, klinischen, pharmazeutischen und biologischen Forschung, die mit den fortgeschrittenen Verfahren der multivariaten Statistik mehr aus ihren Daten herausholen wollen.

Voraussetzungen für den Python Kurs

Erfahrungen mit Python unter Verwendung von Spyder und die Inhalte des Seminars Grundlagen der Statistik mit Python (Interpretation von Korrelationskoeffizienten wie Pearsons r und Signifikanztests wie dem t-Test sollten bekannt sein). Grundlegende Fertigkeiten im Umgang mit Python/Spyder – wie Datenimport, Datenaufbereitung, Grafikerstellung und statistische Standardverfahren – werden vorausgesetzt, ständig angewendet und vertieft. Wenn der Umgang mit Python/Spyder nicht vertraut sein sollte, empfiehlt es sich, vorher ein Python/Spyder-Training mit den Grundlagen oder ein vergleichbares Seminar zu besuchen, um Python und Spyder zu lernen.

Termine und Orte

Datum Uhrzeit Dauer Preis
Köln, DE
06.07.2020 - 10.07.2020 09:00 - 18:00 Uhr 40 h Jetzt buchen ›
07.12.2020 - 11.12.2020 09:00 - 18:00 Uhr 40 h Jetzt buchen ›

SG-Seminar-Nr.: 5378188

Anbieter-Seminar-Nr.: MDP-K

Termin

07.12.2020 - 11.12.2020 , 09:00 - 18:00 Uhr

Der genaue Durchführungsort wird in Kürze bekannt gegeben.

Günstige Preise

Semigator berücksichtigt

  • Frühbucher-Preise
  • Last-Minute-Preise
  • Gruppenkonditionen

€ 2.826,25

Alle Preise inkl. 19% MwSt.

Jetzt buchen ›
Seminar merken ›

Der Anbieter ist für den Inhalt verantwortlich.

Über Semigator mehr erfahren

  • Anbietervergleich von über 1.500 Seminaranbietern
  • Vollständige Veranstaltungsinformationen
  • Schnellbuchung
  • Persönlicher Service
Datum Uhrzeit Dauer Preis
Köln, DE
06.07.2020 - 10.07.2020 09:00 - 18:00 Uhr 40 h Jetzt buchen ›
07.12.2020 - 11.12.2020 09:00 - 18:00 Uhr 40 h Jetzt buchen ›