Python-Entwicklungsumgebung
- Hands-On: Erste Schritte mit Python
- Aufsetzen einer Python Arbeitsumgebung
Einführung in NumPy
- Listen, Arrays und NumPy-Datentypen
- Berechnungen in Arrays
- Broadcasting
- Fancy Indexing
Einführung in Pandas
- Datenaufbereitung
- Indexierung und Slicing eines DataFrames
- Hands-On: Eigenständiges Arbeiten mit Datenstrukturen
Daten einlesen
- Unterschiedliche Datenformate
- Konvertieren von Daten
- Objekte in Pandas (Series Object, DataFrame Object, Index Object)
- Universal Function (ufunc) mit Pandas
- Hierarchical Indexing
- Arbeiten mit Datasets (Merge, Join)
- Aggregation von Datasets (Grouping)
- Hands-On: Eigenständiges Arbeiten, um Daten verschiedener Formate einzulesen und zu konvertieren
Grundlegende Statistiken (pandas)
- Erstellen von grundlegenden, deskriptiven Statistiken
- Kontingenztafeln erstellen
- Hands-On: Eigenständiges Arbeiten, um Daten verschiedener Formate einzulesen, zu konvertieren und erste Statistiken zu erstellen
Datenvisualisierung (matplotlib)
- Typische Datenvisualisierungen
- Datenvisualisierung in Python
- Datenanalyse mit matplotlib
- Histogramme
- Anpassen von Legenden, Farben, Anmerkungen
- Hands-On: Eigenständiges Arbeiten mit Visualisierungen in Python
Machine Learning Algorithmen
- Feature Engineering
- Technischer Überblick über Machine Learning Algorithmen (supervised, unsupervised)
- Supervised Learning
- Regression
- Decision Trees und Random Forests
- Support Vector Machines
- Unsupervised Learning
- K-Means-Clustering
- Principal Component Analysis
- Gaussian Mixture Models
- Vertiefung einzelner ML Algorithmen
- Validierungsmöglichkeiten: Wie bestimme ich die Generalisierung meiner Lösung
Hands-On: Algorithmen in Python (scikit-learn und tensorflow)
- Einführung: wie Python Algorithmen verwendet
- Hands-On: Eigenständiges Arbeiten, um verschiedene Algorithmen zu testen und zu validieren
- Beispiele in Frameworks scikit-learn und tensorflow für supervised und unsupervised learning
Hinweise
Python-Entwicklungsumgebung
- Hands-On: Erste Schritte mit Python
- Aufsetzen einer Python Arbeitsumgebung
Einführung in NumPy
- Listen, Arrays und NumPy-Datentypen
- Berechnungen in Arrays
- Broadcasting
- Fa ...
Mehr Informationen >>